Учебник по промышленной статистике

Здесь центрифуга лабораторная см 12. | На сайте http://almaz2030.com алмазное сверление в Краснодаре. | Смотрите skvazhiny-kaliningrad.ru телеинспекция скважины. |

Анализ процессов - часть 12


раздел  Планирование эксперимента). Как правило, более высокое качество обычно приводит к снижению общей себестоимости. Хотя издержки производства при этом увеличиваются, но убытки, вызванные плохим качеством, например, из-за рекламаций потребителей, потери доли рынка и т.п., обычно намного превышают затраты на контроль качества. На практике два или три хорошо спланированных эксперимента, проведенных в течение нескольких недель, часто позволяют достичь значения показателя Cp, равного 5 или выше. Если вы не знакомы с планированием экспериментов, но интересуетесь качеством процесса, настоятельно рекомендуем ознакомиться с обзором методов, подробно описанных в главе Планирование эксперимента.

Проверка предположения о нормальности распределения
Проверка предположения о нормальности распределения

Только что рассмотренные показатели имеют смысл только тогда, когда измеряемые параметры качества действительно подчиняются нормальному распределению (показатели пригодности для распределений, отличных от нормального, будут введены ниже). Существуют специальные критерии для проверки предположения о нормальности (например, критерий Колмогорова-Смирнова или критерий хи-квадрат), которые описаны в большинстве учебников по статистике и подробно обсуждаются в разделе Непараметрическая статистика и подгонка распределений .

Визуальная проверка на нормальность проводится с помощью графиков вероятность-вероятность (В-В) и квантиль-квантиль (К-К) для нормального распределения. Ниже, после обсуждения показателей пригодности для распределений, отличных от нормального, эти графики будут рассмотрены более подробно.

Доверительные границы
Доверительные границы

До введения в начале 80-тых годов показателей пригодности общим методом описания характеристик производственного процесса был расчет и изучение границ доверительного интервала этого процесса (см., например, Hald, 1952). Смысл этой процедуры таков. Сначала предположим, что соответствующий параметр качества нормально распределен на совокупности выпускаемых изделий; тогда можно подсчитать верхнюю и нижнюю границы интервала, гарантирующие с определенным доверительным уровнем (вероятностью), что определенный процент совокупности находится в этих пределах.


Начало  Назад  Вперед