Учебник по промышленной статистике


Анализ процессов - часть 27


Если вы посмотрите на график плотности распределения, то увидите, что значение x-
должно быть больше 0. В большинстве случаев параметр положения
(theta) известен (обычно равен 0) и определяет минимальное время жизни. Однако иногда оказывается, что вероятность отказа образца равна 0 спустя некоторое время после начала эксперимента, в таких ситуациях естественно считать, что параметр положения
больше 0 (распределение сдвинуто вправо на некоторую величину), и необходимо осуществлять подгонку трехпараметрического распределения Вейбулла, используя различные методы оценки параметра положения. На практике Додсон (Dodson, 1994) рекомендует после подгонки двухпараметрического распределения Вейбулла обратить внимание на хвосты вероятностного графика, а также большие (>6) значения параметра формы, поскольку эти характеристики могут свидетельствовать о ненулевом значении параметра положения и необходимости подгонки трехпараметрической модели.

Оценка параметров

Оценки максимального правдоподобия.
Оценки максимального правдоподобия.

Для получения оценок максимального правдоподобия параметров двух- или трехпараметрического распределения Вейбулла используются стандартные итерационные методы минимизации функций. Особенности этих методов оценивания изложены в книге Dodson (1994); подробное описание итерационного метода Ньютона-Рафсона для численного построения оценок максимального правдоподобия можно найти в книге Keats and Lawrence (1997).

Оценка параметра положения для трехпараметрического распределения Вейбулла связана с рядом вычислительных трудностей (см., например, Lawless, 1982). В частности, если параметр формы меньше 1, то не существует оценок максимального правдоподобия параметров. В других случаях функция правдоподобия может иметь несколько локальных максимумов. В последнем случае Лоулесс (Lawless) рекомендует использовать для оценки параметра положения наименьшее время отказа (или значение чуть меньшее его).

Вероятностные графики, основанные на рангах.
Вероятностные графики, основанные на рангах.



Начало  Назад  Вперед



Книжный магазин