Учебник по промышленной статистике

поздравления с днем рождения директору музыкальной школы. | Ворота из профнастила цена там. |

Анализ процессов - часть 29


График функции риска или интенсивности отказов.

Другой метод оценивания параметров двухпараметрического распределения Вейбулла – графический анализ функции интенсивности (как обсуждалось выше, функция интенсивности или, как ее часто называют, функция риска равняется вероятности наступления отказа в малый интервал времени [t, t + dt) при условии что до момента t отказ не произошел). Этот графический метод аналогичен методу оценки параметров из вероятностного графика функции надежности. Вначале строится график кумулятивной функции интенсивности (по оси х откладываются логарифмы времен жизни); тогда подогнанная регрессионная прямая дает наглядное представление о параметрах распределения. Как и в вероятностных графиках параметр формы оценивается через угол наклона регрессионной прямой, а параметр масштаба может быть оценен как exp(-св.член/коэф.наклона). Подробности можно найти в работе Dodson (1994), а некоторые формулы - в разделе Распределение Вейбулла, надежность и функция риска.

Метод моментов.
Метод моментов.

Идея этого метода, широко обсуждаемого в литературе, состоит в том, чтобы вначале оценить моменты распределения Вейбулла, приравнять их к теоретическим моментам, а затем из полученных уравнений найти параметры распределения. Фактически этот метод используется для подгонки кривых Джонсона для негауссовских распределений с целью последующего вычисления индексов пригодности (см. раздел Подгонка распределений методом моментов). Однако этот метод не подходит для обработки цензурированных наблюдений и, следовательно, для анализа времен отказов.

Сравнение методов оценивания.
Сравнение методов оценивания.

Додсон (Dodson, 1994) приводит результаты моделирования методом Монте-Карло и сравнивает различные способы оценивания. Как правило, оценки максимального правдоподобия являются лучшими для больших выборок (например, n>15), тогда как графические методы более точны для малых выборок.

Замечание об осторожном использовании доверительных интервалов, построенных методом максимального правдоподобия.



Начало  Назад  Вперед



Книжный магазин