Учебник по промышленной статистике


Анализ временных рядов - часть 17


Очевидно, из формулы, приведенной выше, следует, что
должно попадать в интервал между 0 (нулем) и 1 (хотя Brenner et al., 1968, для дальнейшего применения анализа АРПСС считают, что 0<
<2). Gardner (1985) сообщает, что на практике обычно рекомендуется брать
меньше .30. Однако в исследовании Makridakis et al., (1982),
большее .30, часто дает лучший прогноз. После обзора литературы, Gardner (1985) приходит к выводу, что лучше оценивать оптимально
по данным (см. ниже), чем просто "гадать" или использовать искусственные рекомендации.

Оценивание лучшего значения
с помощью данных.
Оценивание лучшего значения
с помощью данных.

На практике параметр сглаживания часто ищется с поиском на сетке. Возможные значения параметра разбиваются сеткой с определенным шагом. Например, рассматривается сетка значений от
= 0.1 до
= 0.9, с шагом 0.1. Затем выбирается
, для которого сумма квадратов (или средних квадратов) остатков (наблюдаемые значения минус прогнозы на шаг вперед) является минимальной.

Индексы качества подгонки
Индексы качества подгонки

Самый прямой способ оценки прогноза, полученного на основе определенного значения

- построить график наблюдаемых значений и прогнозов на один шаг вперед. Этот график включает в себя также остатки (отложенные на правой оси Y). Из графика ясно видно, на каких участках прогноз лучше или хуже.

График прогноза

Такая визуальная проверка точности прогноза часто дает наилучшие результаты. Имеются также другие меры ошибки, которые можно использовать для определения оптимального параметра

(см. Makridakis, Wheelwright, and McGee, 1983):

Средняя ошибка.
Средняя ошибка.

Средняя ошибка (СО) вычисляется простым усреднением ошибок на каждом шаге. Очевидным недостатком этой меры является то, что положительные и отрицательные ошибки аннулируют друг друга, поэтому она не является хорошим индикатором качества прогноза.

Средняя абсолютная ошибка.
Средняя абсолютная ошибка.

Средняя абсолютная ошибка (САО) вычисляется как среднее абсолютных ошибок.


Начало  Назад  Вперед