Учебник по промышленной статистике


Анализ временных рядов - часть 43


Очевидно, корень квадратный из -1 не существует в обычном сознании (отсюда термин мнимое число); однако арифметические операции над мнимыми числами могут производиться естественным образом [например, (i*2)**2= -4]. Полезно представление действительных и мнимых чисел, образующих двумерную координатную плоскость, где горизонтальная или X-ось представляет все действительные числа, а вертикальная или Y-ось представляет все мнимые числа. Комплексные числа могут быть представлены точками на двумерной плоскости. Например, комплексное число 3+i*2 может быть представлено точкой с координатами {3,2} на этой плоскости. Можно также представить комплексные числа как углы; например, можно соединить точку, соответствующую комплексному числу на плоскости с началом координат (комплексное число 0+i*0), и измерить угол наклона этого вектора к горизонтальной оси. Таким образом интуитивно ясно, каким образом формула спектрального разложения, показанная выше, может быть переписана в комплексной области. В таком виде математические вычисления часто более изящны и проще в выполнении, поэтому многие учебники предпочитают представление спектрального анализа в комплексных числах.

Простой пример
Простой пример

Шамвэй (1988) предлагает следующий простой пример для объяснения спектрального анализа. Создадим ряд из 16 наблюдений, полученных из уравнения, показанного ниже, а затем посмотрим, каким образом можно извлечь из него информацию. Сначала создадим переменную и определим ее как:

x = 1*cos(2*

*.0625*(v0-1)) + .75*sin(2*
*.2*(v0-1))

Эта переменная состоит из двух основных периодичностей - первая с частотой

=.0625 (или периодом 1/
=16; одно наблюдение составляет 1/16-ю длины полного цикла, или весь цикл содержит каждые 16 наблюдений) и вторая с частотой
=.2 (или периодом 5). Коэффициент при косинусе (1.0) больше чем коэффициент при синусе (.75). Итоговая таблица результатов спектрального анализа показана ниже.

  Спектральный анализ: ПЕРЕМ1 (shumex.sta)
Число наблюдений: 16  
t Час-
тота  
Период Косинус
корэфф. Синус
корэфф. Периодо-
грамма
0
1
2
3
4
5
6
7
8
.0000
.0625
.1250
.1875
.2500
.3125
.3750
.4375
.5000
 
16.00
8.00
5.33
4.00
3.20
2.67
2.29
2.00
.000
1.006
.033
.374
-.144
-.089
-.075
-.070
-.068
0.000
.028
.079
.559
-.144
-.060
-.031
-.014
0.000
.000
8.095
.059
3.617
.333
.092
.053
.040
.037



Начало  Назад  Вперед



Книжный магазин