Учебник по промышленной статистике


Анализ временных рядов - часть 8


Здесь:

                - константа (свободный член),
 
1,
2,
3   - параметры авторегрессии.

Вы видите, что каждое наблюдение есть сумма случайной компоненты (случайное воздействие,

errorblu.gif (835 bytes)
) и линейной комбинации предыдущих наблюдений.

Требование стационарности.
Требование стационарности.

Заметим, что процесс авторегрессии будет стационарным только, если его параметры лежат в определенном диапазоне. Например, если имеется только один параметр, то он должен находиться в интервале -1<
<+1. В противном случае, предыдущие значения будут накапливаться и значения последующих xt могут быть неограниченными, следовательно, ряд не будет стационарным. Если имеется несколько параметров авторегрессии, то можно определить аналогичные условия, обеспечивающие стационарность (см. например, Бокс и Дженкинс, 1976; Montgomery, 1990).

Процесс скользящего среднего.
Процесс скользящего среднего.

В отличие от процесса авторегрессии, в процессе скользящего среднего каждый элемент ряда подвержен суммарному воздействию предыдущих ошибок. В общем виде это можно записать следующим образом:

xt = µ +

t -
1*
(t-1) -
2*
(t-2) -
3*
(t-3) - ...

Здесь:
µ                - константа,
 

1,
2,
3  - параметры скользящего среднего.

Другими словами, текущее наблюдение ряда представляет собой сумму случайной компоненты   (случайное воздействие,

errorblu.gif (835 bytes)
) в данный момент и линейной комбинации случайных воздействий в предыдущие моменты времени.

Обратимость.
Обратимость.

Не вдаваясь в детали, отметим, что существует "двойственность" между процессами скользящего среднего и авторегрессии (см. например, Бокс и Дженкинс, 1976; Montgomery, Johnson, and Gardiner, 1990). Это означает, что приведенное выше уравнение скользящего среднего можно переписать (обратить) в виде уравнения авторегрессии (неограниченного порядка), и наоборот. Это так называемое свойство обратимости.


Начало  Назад  Вперед



Книжный магазин