Учебник по промышленной статистике


Дискриминантный анализ - часть 11


Априорная и апостериорная классификация.
Априорная и апостериорная классификация.

Прежде чем приступить к изучению деталей различных процедур оценивания, важно уяснить, что эта разница ясна. Обычно, если вы оцениваете на основании некоторого множества данных дискриминирующую функцию, наилучшим образом разделяющую совокупности, и затем используете те же самые данные для оценивания того, какова точность вашей процедуры, то вы во многом полагаетесь на волю случая. В общем случае, получают, конечно худшую классификацию для образцов, не использованных для оценки дискриминантной функции. Другими словами, классификация действует лучшим образом для выборки, по которой была проведена оценка дискриминирующей функции (апостериорная классификация), чем для свежей выборки (априорная классификация). (Трудности с (априорной) классификацией будущих образцов заключается в том, что никто не знает, что может случиться. Намного легче классифицировать уже имеющиеся образцы.) Поэтому оценивание качества процедуры классификации никогда не производят по той же самой выборке, по которой была оценена дискриминирующая функция. Если желают использовать процедуру для классификации будущих образцов, то ее следует "испытать" (произвести кросс-проверку) на новых объектах.

Функции классификации.
Функции классификации.

Функции классификации не следует путать с дискриминирующими функциями. Функции классификации предназначены для определения того, к какой группе наиболее вероятно может быть отнесен каждый объект. Имеется столько же функций классификации, сколько групп. Каждая функция позволяет вам для каждого образца и для каждой совокупности вычислить веса классификации по формуле:

Si = ci + wi1*x1 + wi2*x2 + ... + wim*xm

В этой формуле индекс i обозначает соответствующую совокупность, а индексы 1, 2, ..., m обозначают m переменных; ci являются константами для i-ой совокупности, wij - веса для j-ой переменной при вычислении показателя классификации для i-ой совокупности; xj - наблюдаемое значение для соответствующего образца j-ой переменной.


Начало  Назад  Вперед



Книжный магазин