Учебник по промышленной статистике


Дискриминантный анализ - часть 9


Поэтому вы можете проверить, являются ли переменные нормально распределенными. Отметим, однако, что пренебрежение условием нормальности обычно не является "фатальным" в том смысле, что результирующие критерии значимости все еще "заслуживают доверия". Вы также можете воспользоваться специальными критериями нормальности и графиками.

Однородность дисперсий/ковариаций.
Однородность дисперсий/ковариаций.

Предполагается, что матрицы дисперсий/ковариаций переменных однородны. Как и ранее, малые отклонения не фатальны, однако прежде чем сделать окончательные выводы при важных исследованиях, неплохо обратить внимание на внутригрупповые матрицы дисперсий и корреляций. В частности, можно построить матричную диаграмму рассеяния, весьма полезную для этой цели. При наличии сомнений попробуйте произвести анализ заново, исключив одну или две малоинтересных совокупности. Если общий результат (интерпретация) сохраняется, то вы, по-видимому, имеете разумное решение. Вы можете также использовать многочисленные критерии и способы для того, чтобы проверить, нарушено это предположение в ваших данных или нет. Однако, как упомянуто в разделе Дисперсионный анализ, многомерный M-критерий Бокса для проверки однородности матриц дисперсий/ковариаций, в частности, чувствителен к отклонению от многомерной нормальности и не должен восприниматься слишком "серьезно".

Корреляции между средними и дисперсиями.
Корреляции между средними и дисперсиями.

Большинство "реальных" угроз корректности применения критериев значимости возникает из-за возможной зависимости между средними по совокупностям и дисперсиями (или стандартными отклонениями) между собой. Интуитивно ясно, что если имеется большая изменчивость в совокупности с высокими средними в нескольких переменных, то эти высокие средние ненадежны. Однако критерии значимости основываются на объединенных дисперсиях, то есть, на средней дисперсии по всем совокупностям. Поэтому критерии значимости для относительно больших средних (с большими дисперсиями) будут основаны на относительно меньших объединенных дисперсиях и будут ошибочно указывать на статистическую значимость.


Начало  Назад  Вперед



Книжный магазин