Учебник по промышленной статистике


Дисперсионный анализ - часть 14


Обычно, при проведении экспериментов с повторными измерениями, нас интересуют различия в измерениях одних и тех же величин в разные моменты времени. А именно, нас интересует значимость этих различий. Если одновременно с измерениями зависимых переменных проводится измерение ковариат, можно вычислить корреляцию между ковариатой и зависимой переменной. Например, можно изучать интерес к математике и математические навыки в начале и в конце семестра. Интересно было бы проверить, коррелированы ли между собой изменения в интересе к математике с изменением математических навыков. Модуль Дисперсионный анализ в STATISTICA автоматически оценивает статистическую значимость изменения ковариат в тех планах, где это возможно.

В начало



Многомерные планы: Многомерный дисперсионный и ковариационный анализ

  • Межгрупповые планы
  • Планы с повторными измерениями
  • Суммы значений переменной и многомерный дисперсионный анализ

Для просмотра других обзорных разделов выберите соответствующее название ниже.

  • Основные идеи
  • Сложные планы
  • Ковариационный анализ (ANCOVA)
  • Анализ контрастов и апостериорные критерии
  • Предположения и последствия их нарушения

См. также Методы дисперсионного анализа, Компоненты дисперсии и смешанные модели ANOVA/ANCOVA и Планирование эксперимента.

Межгрупповые планы
Межгрупповые планы

Все рассматриваемые ранее примеры включали только одну зависимую переменную. Когда одновременно имеется несколько зависимых переменных, возрастает лишь сложность вычислений, а содержание и основные принципы не меняются. Например, проводится исследование двух различных учебников. При этом изучаются успехи студентов в изучении физики и математики. В этом случае имеются две зависимые переменные и нужно выяснить, как влияют на них одновременно два разных учебника. Для этого можно воспользоваться многомерным дисперсионным анализом (MANOVA). Вместо одномерного F критерия, используется многомерный F критерий (лямбда-критерий Уилкса), основанный на сравнении ковариационной матрицы ошибок и межгрупповой ковариационной матрицы.


Начало  Назад  Вперед