Учебник по промышленной статистике

Продажа кондиционеров в орле смотри здесь. | коррекция гелевых ногтей | сколько стоит сдать на права во мценске | Главная КВАРТИРЫ В НАЛИЧИИ Коммерческие площади вибропрессованная продукция. | входные металлические двери воронеж цены. |

Дисперсионный анализ - часть 20


Представим себе, что имеется 8 ячеек в плане, 7 из которых имеют почти одинаковое среднее, а в одной ячейке среднее намного больше остальных. Тогда F критерий может обнаружить статистически значимый эффект. Но предположим, что в ячейке с большим средним значением и дисперсия значительно больше остальных, т.е. среднее значение и дисперсия в ячейках зависимы (чем больше среднее, тем больше дисперсия). В этом случае большое среднее значение ненадежно, так как оно может быть вызвано большой дисперсией данных. Однако F статистика, основанная на объединенной дисперсии внутри ячеек, будет фиксировать большое среднее, хотя критерии, основанные на дисперсии в каждой ячейке не все различия в средних будут считать значимыми.
Специальный случай: коррелированность средних и дисперсий. Бывают случаи, когда F статистика может вводить в заблуждение. Это бывает, когда в ячейках плана средние значения коррелированы с дисперсией. Модуль Дисперсионный анализ позволяет строить диаграммы рассеяния дисперсии или стандартного отклонения относительно средних для обнаружения такой корреляции. Причина, по которой такая корреляция опасна, состоит в следующем. Представим себе, что имеется 8 ячеек в плане, 7 из которых имеют почти одинаковое среднее, а в одной ячейке среднее намного больше остальных. Тогда F критерий может обнаружить статистически значимый эффект. Но предположим, что в ячейке с большим средним значением и дисперсия значительно больше остальных, т.е. среднее значение и дисперсия в ячейках зависимы (чем больше среднее, тем больше дисперсия). В этом случае большое среднее значение ненадежно, так как оно может быть вызвано большой дисперсией данных. Однако F статистика, основанная на объединенной дисперсии внутри ячеек, будет фиксировать большое среднее, хотя критерии, основанные на дисперсии в каждой ячейке не все различия в средних будут считать значимыми.

Такой характер данных (большое среднее и большая дисперсия) часто встречается, когда имеются резко выделяющиеся наблюдения.


Начало  Назад  Вперед



Книжный магазин