Учебник по промышленной статистике


Главные компоненты и факторный анализ - часть 3


Итак, фактически, вы сократили число переменных и заменили две одной. Отметим, что новый фактор (переменная) в действительности является линейной комбинацией двух исходных переменных.

Анализ главных компонент.
Анализ главных компонент.

Пример, в котором две коррелированные переменные объединены в один фактор, показывает главную идею факторного анализа или, более точно, анализа главных компонент (это различие будет обсуждаться позднее). Если пример с двумя переменными распространить на большее число переменных, то вычисления становятся сложнее, однако основной принцип представления двух или более зависимых переменных одним фактором остается в силе.

Выделение главных компонент.
Выделение главных компонент.

В основном процедура выделения главных компонент подобна вращению, максимизирующему дисперсию (варимакс) исходного пространства переменных. Например, на диаграмме рассеяния вы можете рассматривать линию регрессии как ось X, повернув ее так, что она совпадает с прямой регрессии. Этот тип вращения называется вращением, максимизирующим дисперсию, так как критерий (цель) вращения заключается в максимизации дисперсии (изменчивости) "новой" переменной (фактора) и минимизации разброса вокруг нее (см. Стратегии вращения).

Обобщение на случай многих переменных.
Обобщение на случай многих переменных.

В том случае, когда имеются более двух переменных, можно считать, что они определяют трехмерное "пространство" точно так же, как две переменные определяют плоскость. Если вы имеете три переменные, то можете построить 3М диаграмму рассеяния.

3М диаграмма рассеяния

Для случая более трех переменных, становится невозможным представить точки на диаграмме рассеяния, однако логика вращения осей с целью максимизации дисперсии нового фактора остается прежней.

Несколько ортогональных факторов.
Несколько ортогональных факторов.

После того, как вы нашли линию, для которой дисперсия максимальна, вокруг нее остается некоторый разброс данных. И процедуру естественно повторить. В анализе главных компонент именно так и делается: после того, как первый фактор выделен, то есть, после того, как первая линия проведена, определяется следующая линия, максимизирующая остаточную вариацию (разброс данных вокруг первой прямой), и т.д.


Начало  Назад  Вперед



Книжный магазин