Учебник по промышленной статистике


Графические методы анализа данных - часть 9


Нормальные вероятностные графики - это быстрый способ визуальной проверки степени соответствия данных нормальному распределению.

В свою очередь категоризованные вероятностные графики дают возможность исследовать близость к нормальному распределению различных подгрупп данных .

Нормальный вероятностный график

Категоризованные нормальные вероятностные графики представляют собой эффективный инструмент для исследования однородности группы наблюдений с точки зрения соответствия нормальному распределению.

Категоризованный вероятностный график

Графики квантиль-квантиль
Графики квантиль-квантиль

Категоризованные графики квантиль-квантиль (или К-К) используются для поиска в определенном семействе распределений того распределения, которое наилучшим образом описывает имеющиеся данные.

Графики квантиль-квантиль

В случае категоризованных графиков К-К строится набор графиков квантиль-квантиль, по одному для каждого значения категориальных переменных (X или X и Y) или для заданных условий выбора сложных подгрупп (см. Методы категоризации). Для графиков К-К используются следующие семейства распределений:  экспоненциальное, экстремальное, нормальное, Релея, бета-, гамма-, логнормальное и Вейбулла.

Графики вероятность-вероятность
Графики вероятность-вероятность

Категоризованные графики вероятность-вероятность (или В-В) используются для проверки соответствия конкретного теоретического распределения имеющимся исходным данным. На этих графиках для каждого значения категориальных переменных (X или X и Y) или для заданных условий выбора сложных подгрупп (см. Методы категоризации) создается по одному графику вероятность-вероятность.

Графики вероятность-вероятность

На графиках В-В строится наблюдаемая функция распределения (доля непропущенных значений

x) в зависимости от теоретической функции распределения, чтобы оценить соответствие этой теоретической функции наблюдаемым данным. Если все точки этого графика располагаются на диагонали (содержащей точку 0 и имеющей наклон 1), то можно заключить, что наблюдаемое распределение хорошо аппроксимируется данной теоретической функцией.




Начало  Назад  Вперед