Учебник по промышленной статистике


Канонический анализ - часть 3


Как и собственные значения, корреляции между последовательно выделяемыми на каждом шаге каноническими переменными, убывают. Поэтому, в выводимом на экран отчете о коррелированности между множествами переменных часто приводят лишь первое, т.е. максимальное значение. Однако другие канонические переменные также могут быть значимо коррелированы, и эти корреляции часто допускают достаточно осмысленную интерпретацию.

Значимость корней.
Значимость корней.

Критерий значимости канонических корреляций сравнительно несложен. Во-первых, канонические корреляции оцениваются одна за другой в порядке убывания. Только те корни, которые оказались статистически значимыми, оставляются для   последующего анализа. Хотя на самом деле вычисления происходят немного иначе. Программа сначала оценивает значимость всего набора корней, затем значимость набора, остающегося после удаления первого корня, второго корня, и т.д.

Некоторые авторы подвергали критике использование последовательных критериев значимости для канонических корней (см., например, работу Harris, 1976). Однако, эта процедура была "реабилитирована" с помощью метода Монте-Карло в вышедшей позднее книге Mendoza, Markos and Gonter (1978).
Исследования показали, что используемый критерий обнаруживает большие канонические корреляции даже при небольшом размере выборки (например, n = 50). Слабые канонические корреляции (например, R = .3) требуют больших размеров выборки (n > 200) для обнаружения в 50% случаев. Отметим, что канонические корреляции небольшого размера обычно не представляют практической ценности, поскольку им соответствует небольшая реальная изменчивость исходных данных. Чуть позднее, мы поговорим об этом подробнее, а также обсудим влияние на результаты размера выборки.

Канонические веса.
Канонические веса.

После определения числа значимых канонических корней возникает вопрос об интерпретации каждого (значимого) корня. Напомним, что каждый корень в действительности представляет две взвешенные суммы, по одной на каждое множество переменных.


Начало  Назад  Вперед