Учебник по промышленной статистике


Канонический анализ - часть 7


Практическая значимость.
Практическая значимость.

Для измерения избыточности также бывает полезным определение практической значимости канонических корней. При больших размерах выборки (см. ниже), канонические корреляции со значением R = .30 могут оказаться статистически значимыми (см. выше). Если возвести этот коэффициент в квадрат (R-квадрат = .09) и использовать формулу для избыточности, становится ясным, что такие канонические корни объясняют лишь незначительную долю изменчивости переменных. Хотя, разумеется, окончательное решение о практической значимости принимается на основании субъективной позиции исследователя. Однако для получения правдоподобных оценок того, насколько реальная изменчивость переменных объясняется конкретным каноническим корнем, бывает полезным не забывать о мере избыточности, т.е., о том насколько реальная изменчивость в одном множестве переменных объясняется другим множеством.

В начало



Предположения

Предположения

В этом разделе приводится список наиболее важных предположений анализа канонической корреляции, выполнение которых обеспечивает получение достоверных и обоснованных результатов.

Распределение.
Распределение.

Применение критерия значимости при анализе канонической корреляции основано на предположении, что переменные в выборке имеют многомерное нормальное распределение. Как и большинство других модулей пакета STATISTICA, модуль Каноническая корреляция позволяет провести графический анализ данных, т.е., построить гистограмму частот с наложенной на нее нормальной кривой, или вывести на экран диаграмму рассеяния наблюдаемой переменной. Теоретически, последствия нарушения этого предположения мало изучены. Однако при очень больших размерах выборки (см. ниже) результаты анализа канонической корреляции достаточно устойчивы или робастны.

Объем выборки.
Объем выборки.

В книге Stevens (1986) приводится подробное обсуждение размера выборки, необходимого для получения достоверных результатов. Как уже говорилось, при наличии больших корреляций между данными (например, R > .7), даже малые размеры выборки (например, n = 50) позволяют в большинстве случаев обнаружить эти корреляции.


Начало  Назад  Вперед



Книжный магазин