Учебник по промышленной статистике


Многомерное шкалирование - часть 3


Величина стресса Phi в для текущей конфигурации определяется так:

Phi =

[dij - f (
ij)]2

Здесь dij - воспроизведенные расстояния в пространстве заданной размерности, а

ij (дельтаij) - исходное расстояние. Функция f (
ij) обозначает неметрическое монотонное преобразование исходных данных (расстояний). Таким образом, МНШ воспроизводит не количественные меры сходств объектов, а лишь их относительный порядок.

Обычно используется одна из несколько похожих мер сходства. Тем не менее, большинство из них сводится к вычислению суммы квадратов отклонений наблюдаемых расстояний (либо их некоторого монотонного преобразования) от воспроизведенных расстояний. Таким образом, чем меньше значение стресса, тем лучше матрица исходных расстояний согласуется с матрицей результирующих расстояний.

Диаграмма Шепарда.
Диаграмма Шепарда.

Можно построить для текущей конфигурации точек график зависимости воспроизведенных расстояния от исходных расстояний. Такая диаграмма рассеяния называется диаграммой Шепарда. По оси ординат OY показываются воспроизведенные расстояния (сходства), а по оси OX откладываются истинные сходства (расстояния) между объектами (отсюда обычно получается отрицательный наклон). На этом график также строится график ступенчатой функции. Ее линия представляет так называемые величины D-с крышечкой, то есть, результат монотонного преобразования f(
) исходных данных. Если бы все воспроизведенные результирующие расстояния легли на эту ступенчатую линию, то ранги наблюдаемых расстояний (сходств) был бы в точности воспроизведен полученным решением (пространственной моделью). Отклонения от этой линии показывают на ухудшение качества согласия (т.е. качества подгонки модели).

В начало



Задание размерности пользователем

Задание размерности пользователем

Если вы уже знакомы с факторным анализом, вы вполне можете пропустить этот раздел. В противном случае вы можете перечитать раздел Факторный анализ. Однако это не является необходимым для понимания идей многомерного шкалирования.




Начало  Назад  Вперед



Книжный магазин