Учебник по промышленной статистике

краска металлик для авто |

Многомерное шкалирование


Многомерное шкалирование

  • Общая цель
  • Логика многомерного шкалирования
  • Вычислительные методы
  • Задание размерности пользователем
  • Интерпретация осей координат
  • Приложения
  • Многомерное шкалирование и факторный анализ


Общая цель

Общая цель

Многомерное шкалирование (МНШ) можно рассматривать как альтернативу факторному анализу (см. Факторный анализ). Целью последнего, вообще говоря, является поиск и интерпретация "латентных (т.е. непосредственно не наблюдаемых) переменных", дающих возможность пользователю объяснить сходства между объектами, заданными точками в исходном пространстве признаков. Для определенности и краткости, далее, как правило, будем говорить лишь о сходствах объектов, имея ввиду, что на практике это могут быть различия, расстояния или степени связи между ними. В факторном анализе сходства между объектами (например, переменными) выражаются с помощью матрицы (таблицы) коэффициентов корреляций. В методе МНШ дополнительно к корреляционным матрицам, в качестве исходных данных можно использовать произвольный тип матрицы сходства объектов. Таким образом, на входе всех алгоритмов МНШ используется матрица, элемент которой на пересечении ее i-й строки и j-го столбца, содержит сведения о попарном сходстве анализируемых объектов (объекта [i] и объекта [j]). На выходе алгоритма МНШ получаются числовые значения координат, которые приписываются каждому объекту в некоторой новой системе координат (во "вспомогательных шкалах", связанных с латентными переменными, откуда и название МНШ), причем размерность нового пространства признаков существенно меньше размерности исходного (за это собственно и идет борьба).

В начало



Логика многомерного шкалирования

Логика многомерного шкалирования

Логику МНШ можно проиллюстрировать на следующем простом примере. Предположим, что имеется матрица попарных расстояний (т.е. сходства некоторых признаков) между крупными американскими городами. Анализируя матрицу, стремятся расположить точки с координатами городов в двумерном пространстве (на плоскости), максимально сохранив реальные расстояния между ними.


Начало  Назад  Вперед