Учебник по промышленной статистике


Множественная регрессия - часть 2


Кадровый аналитик затем проводит исследование размеров окладов (Salary) среди сравнимых компаний на рынке, записывая размер жалования и соответствующие характеристики (т.е. значения параметров) по различным позициям. Эта информация может быть использована при анализе с помощью множественной регрессии для построения регрессионного уравнения в следующем виде:

Salary = .5*Resp + .8*No_Super

Как только эта так называемая линия регрессии определена, аналитик оказывается в состоянии построить график ожидаемой (предсказанной) оплаты труда и реальных обязательств компании по выплате жалования. Таким образом, аналитик может определить, какие позиции недооценены (лежат ниже линии регрессии), какие оплачиваются слишком высоко (лежат выше линии регрессии), а какие оплачены адекватно.

В общественных и естественных науках процедуры множественной регрессии чрезвычайно широко используются в исследованиях. В общем, множественная регрессия позволяет исследователю задать вопрос (и, вероятно, получить ответ) о том, "что является лучшим предиктором для...". Например, исследователь в области образования мог бы пожелать узнать, какие факторы являются лучшими предикторами успешной учебы в средней школе. А психолога мог быть заинтересовать вопрос, какие индивидуальные качества позволяют лучше предсказать степень социальной адаптации индивида. Социологи, вероятно, хотели бы найти те социальные индикаторы, которые лучше других предсказывают результат адаптации новой иммигрантской группы и степень ее слияния с обществом. Заметим, что термин "множественная" указывает на наличие нескольких предикторов или регрессоров, которые используются в модели.

В начало



Вычислительные аспекты
Вычислительные аспекты

Общая вычислительная задача, которую требуется решать при анализе методом множественной регрессии, состоит в подгонке прямой линии к некоторому набору точек.

Диаграмма рассеяния

В простейшем случае, когда имеется одна зависимая и одна независимая переменная, это можно увидеть на диаграмме рассеяния.

  • Метод наименьших квадратов
  • Уравнение регрессии
  • Однозначный прогноз и частная корреляция
  • Предсказанные значения и остатки
  • Остаточная дисперсия и коэффициент детерминации R-квадрат
  • Интерпретация коэффициента множественной корреляции R




Начало  Назад  Вперед



Книжный магазин