Учебник по промышленной статистике


Моделирование структурными уравнениями - часть 3


При этом правила преобразований становятся более громоздкими, вычисления более сложными, но основной смысл остается прежним - вы можете проверить связаны ли переменные линейной зависимостью, изучая их дисперсии и ковариации.

Для проверки имеет ли ковариационная матрица заданную структуру статистики используют несколько процедур. Процесс структурного моделирования состоит из следующих этапов:

  1. вы описываете (обычно с помощью диаграммы путей) модель, представляющую ваше понимание зависимостей между переменными;
  2. программа определяет, с помощью специальных внутренних методов, какие значения дисперсий и ковариаций переменных получаются в текущей модели на основании входных данных;
  3. программа проверяет, насколько хорошо полученные дисперсии и ковариации удовлетворяют нашей модели;
  4. программа сообщает пользователю полученные результаты статистических испытаний, а также выводит оценки параметров и стандартные ошибки для численных коэффициентов в линейных уравнениях вмести с большим количеством дополнительной диагностической информации;
  5. на основании этой информации, вы решаете, хорошо ли текущая модель согласуется с вашими данными.

Основные этапы процесса структурного моделирования описаны далее в тексте и показаны на диаграмме внизу. Во-первых, хотя логика математических вычислений при проведении структурного моделирования очень сложная, основные этапы соответствуют пяти шагам на диаграмме.



Во-вторых, следует помнить, что не разумно ожидать идеального соответствия модели и данных - по нескольким причинам. Структурные модели с линейными зависимостями являются только приближениями реальных явлений. Природные зависимости далеки от линейных. Поэтому, истинные зависимости между переменными, скорее всего, не линейны. Более того, истинность многих статистических предположений, накладываемых на проверяемую модель, остается под большим вопросом. На практике нас интересует не то "Идеально ли модель согласуется с данными?" а, "Согласуется ли она достаточно хорошо, чтобы быть полезной для практического использования и разумного объяснения структуры наблюдаемых данных?"



Начало  Назад  Вперед



Книжный магазин