Учебник по промышленной статистике


Нейронные сети - часть 43


Сеть формирует грубую структуру топологического порядка, при которой похожие наблюдения активируют группы близко лежащих нейронов на топологической карте. С каждой новой эпохой скорость обучения и размер окрестности уменьшаются, тем самым внутри участков карты выявляются все более тонкие различия, что в конце концов приводит к тонкой настройке каждого нейрона. Часто обучение умышленно разбивают на две фазы: более короткую, с большой скоростью обучения и большими окрестностями, и более длинную с малой скоростью обучения и нулевыми или почти нулевыми окрестностями.

После того, как сеть обучена распознаванию структуры данных, ее можно использовать как средство визуализации при анализе данных. С помощью данных, выводимых в окне Частоты выигрышей - Win Frequencies , (где для каждого нейрона подсчитывается, сколько раз он выигрывал при обработке обучающих примеров), можно определить, разбивается ли карта на отдельные кластеры. Можно также обрабатывать отдельные наблюдения и смотреть, как при этом меняется топологическая карта, - это позволяет понять, имеют ли кластеры какой-то содержательный смысл (как правило при этом приходится возвращаться к содержательному смыслу задачи, чтобы установить, как соотносятся друг с другом кластеры наблюдений). После того, как кластеры выявлены, нейроны топологической карты помечаются содержательными по смыслу метками (в некоторых случаях помечены могут быть и отдельные наблюдения). После того, как топологическая карта в описанном здесь виде построена, на вход сети можно подавать новые наблюдения. Если выигравший при этом нейрон был ранее помечен именем класса, то сеть осуществляет классификацию. В противном случае считается, что сеть не приняла никакого решения.

При решении задач классификации в сетях Кохонена используется так называемый порог доступа. Ввиду того, что в такой сети уровень активации нейрона есть расстояние от него до входного примера, порог доступа играет роль максимального расстояния, на котором происходит распознавание.


Начало  Назад  Вперед