Учебник по промышленной статистике


Нелинейное оценивание - часть 2


Самым удобным способом оценивания параметров полученной регрессии является Нелинейное оценивание. Например, его можно использовать для уточнения зависимости между дозой и эффективностью лекарства, стажем работы и производительностью труда, стоимостью дома и временем, необходимым для его продажи и т.д. Наверное, вы заметили, что ситуации, рассматриваемые в этих примерах, часто интересовали нас и в таких методах как множественная регрессия (см. Множественная регрессия) и дисперсионный анализ (см. Дисперсионный анализ). На самом деле, можно считать Нелинейное оценивание обобщением этих двух методов. Так, в методе множественной регрессии (и в дисперсионном анализе) предполагается, что зависимость отклика от предикторных переменных линейна. Нелинейное оценивание оставляет выбор характера зависимости за вами. Например, вы можете определить зависимую переменную как логарифмическую функцию от предикторной переменной, как степенную функцию, или как любую другую композицию элементарных функций от предикторов (однако, если все изучаемые переменные категориальны по своей природе, вы можете также воспользоваться модулем Анализ соответствий).

Если позволить рассмотрение любого типа зависимости между предикторами и переменной отклика, возникают два вопроса. Во-первых, как истолковать найденную зависимость в виде простых практических рекомендаций. С этой точки зрения линейная зависимость очень удобна, так как позволяет дать простое пояснение: “чем больше x (т.е., чем больше цена дома), тем больше y (тем больше времени нужно, чтобы его продать); и, задавая конкретные приращения x, можно ожидать пропорциональное приращение y”. Нелинейные соотношения обычно нельзя так просто проинтерпретировать и выразить словами. Второй вопрос - как проверить, имеется ли на самом деле предсказанная нелинейная зависимость.

Далее мы рассмотрим проблему нелинейной регрессии более формально и введем стандартную терминологию, позволяющую рассмотреть сущность этого метода более пристально. Мы также покажем примеры его использования в различных областях исследований: медицине, социологии, физике, химии, фармакологии, проектировании и т.д.




Начало  Назад  Вперед



Книжный магазин