Учебник по промышленной статистике


Нелинейное оценивание - часть 20



Метод Хука-Дживиса.

Метод Хука-Дживиса.

В некотором смысле, это простейший из всех алгоритмов. При каждой итерации метод сначала определяет схему расположения параметров, оптимизируя текущую функцию потерь перемещением каждого параметра по отдельности. При этом вся комбинация параметров сдвигается на новое место. Это новое положение в m-мерном пространстве параметров определяется экстраполяцией вдоль линии, соединяющей текущую базовую точку с новой точкой. Размер шага этого процесса постоянно меняется для попадания в оптимальную точку. Этот метод обычно очень эффективен и его следует использовать, если квази-ньютоновский и симплекс-метод (см. выше) не дали удовлетворительных оценок.

Метод Розенброка. Даже если все остальные методы не сработали, метод Розенброка часто приводит к правильному результату. Этот метод вращает пространство параметров, располагая одну ось вдоль “гребня” поверхности (этот метод также называется метод вращения координат), при этом все другие остаются ортогональными выбранной оси. Если поверхность графика функции потерь имеет одну вершину и различимые “гребни” в направлении минимума функции потерь, этот метод приводит к очень точным значениям параметров, минимизирующим функцию потерь. Однако следует отметить, что этот поисковый алгоритм остановится преждевременно, если на область значений параметров наложены несколько ограничений (отражающихся в штрафном значении; см. выше), которые пересекаются, приводя к обрыванию “гребня”.

Матрица Гессе и стандартные ошибки. Матрицу частных производных второго порядка также часто называют матрицей Гессе. Оказывается, что обратная к ней матрица приблизительно равна матрице ковариаций оцениваемых параметров. Интуитивно понятно, что существует обратная зависимость между производными второго порядка по параметрам и их стандартными ошибками. Если изменить угловой коэффициент в точке минимума функции и сделать минимум функции более “резким”, то производные второго порядка увеличатся; при этом, оценки параметров будут практически стабильными в смысле, что параметры в точке минимума будут легко уточняемы.


Начало  Назад  Вперед



Книжный магазин